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ABSTRACT

The large dynamic range of star formation in galaxies, and the apparently

complex environmental influences involved in triggering or suppressing star

formation, challenge our understanding. The key to this understanding may be

the detailed study of simple physical models for the dominant nonlinear

interactions in interstellar cloud systems. We describe one such model, a

generalized Oort model cloud fluid, and explore two simple applications of

it. The first of these is the relaxation of an isolated volume of cloud fluid

following a disturbance. Though very idealized, this closed box study suggests

a physical mechanism for starbursts, which is based on the approximate commen-

surability of massive cloud lifetimes and cloud collisional growth times. The

second application is to the modeling of colliding ring galaxies. In this

case, the driving processes operating on a dynamical timescale interact with

the local cloud processes operating on the above timescales. The result is a

variety of interesting nonequilibrium behaviors, including spatial variations

of star formation that do not depend monotonically on gas density.
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I. INTRODUCTION

A. The Dynamic Range of Star Formation in Galaxies

The discovery of Sargent and Searle (1970) that several Zwicky irregular

galaxies are essentially "extragalactic HII regions" provided one of the

earliest indications that current star formation rates (SFRs) in other galaxies

could be very high compared to the SFR in our galaxy. It was clear to these

authors that the relatively high SFRs in these galaxies could not persist for

any significant fraction of a Hubble time, if only because the implied gas

consumption time was short. Later, Gerola and Seiden showed that relatively

strong (i.e. enhancement factors ofan order of a few)bursts of star formation,

separated by relatively long quiescent periods, could be a consequence of self-

propagating star formation in relatively small and essentially three-dimensional

systems like the dwarf irregulars (see e.g. the review of Seiden and Gerola

1982). At the same time, the discovery of Larson and Tinsley (1978) that

bursts of star formation were apparently ubiquitous in Arp interacting galaxies

showed that high SFRs were not unique to dwarf galaxies. More recently, the

observation that merger remnants are undergoing very extended starbursts (e.g.

Joseph and Wright 1985, and further references in the review of Schweizer

1986), provides very dramatic evidence that large galaxies are capable of very

large net SFRs.

Moreover, these examples of high SFRs in galaxies do not show the full

dynamic range of star formation in galaxies, since galactic SFRs extend to very

low values as well. One example, is given by the class of anemic spirals of

van den Bergh (e.g. 1977). However, these galaxies have low gas densities as

well as small SFRs. A better example is provided by the gas-rich, low-surface-

brightness (LSB) galaxies discovered by Thuan and Seitzer (1979), and further

studied by Romanishin et al. (1982). As Schommer and Bothun (1983) point out,

these galaxies may provide evidence for suppression of star formation in other-

wise normal disk galaxies.

Many questions are raised by the existence of variations in star formation

between galaxies as large as those between the LSB galaxies and the starburst

galaxies. What are the mechanisms responsible? What are the circumstances

required to induce bursts or the suppression of star formation in galaxies?

What is the precise role of interactions? Is the star formation process in

starburst galaxies an extreme extension of the normal mechanisms of star

formation in disk galaxies or is it a different process entirely? How can

we tell observationally?

With respect to the latter two questions, there is evidence that the star

formation efficiencies per unit mass in starburst galaxies can range up to

about two orders of magnitude higher than in normal spirals (Rieke et al. 1980,

Sanders and Mirabel 1985, Young et al. 1986, Sanders et al. 1986). In itself

this result does not answer the question of whether starbursts represent a

nonlinear continuation of a normal (e.g. Schmidt-law) mode of star formation,

or whethe_ Qnce some threshold is exceeded a qualitatively different mode

appears.' _fthere are two distinct modes of star formation, then the dis-

persion in optical and near-infrared colors in color-color diagrams gives an

indication of the relative importance of burst versus continuous star formation
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in galaxies (Larson and Tinsley 1978, Struck-Marcell and Tinsley 1978, and
Telesco 1983). However, these models do not directly address the question of
mechanisms.

At the present time, with radio continuum and optical line surveys, and
with IRAS data and near-infrared mappingof individual galaxies, there is a
wealth of new information available on star formation in galaxies. To decipher
the systematics and mechanismsof star formation in galaxies, it has been and
will continue to be especially important to have statistical studies of large
sets of data, collected in a consistent way (e.g. the IRASdata (Lonsdale et
al. 1985), or optical line work like that of Balzano 1983and Keel et al.
1985). For the present, we leave the intriguing questions posed above, but
will return in the concluding section to consider a possible explanation for
the large dynamic range of star formation in galaxies, which is suggested by a
simple physical model.

Following somediscussion of the general role of simple models, a specific
model is presented in section II. In sections III and IV two applications of
the model are considered - relaxation in a closed box and the evolution of ring
galaxies.

B. The Heuristic Role of Simple Physical Models

In order to model and understand the wide range of phenomena associated

with star formation in galaxies, theorists have used a variety of tools and

techniques, including continuum kinetic or fluid approaches, discrete N-body

models with approximations to include interstellar gas cloud and cloud-star

interactions, and modeling with a stochastic component of the star formation.

This range parallels that in studies of fluid turbulence, and other nonlinear

phenomena. The various approaches have different advantages and disadvantages,

both from the point of view of faithfully representing the phenomena, and the

practical point of view of being able to perform the calculations and inter-

pret them, analytically or on existing computer_. In the end, to derive a

consistent interpretation of the many aspects of star formation in galaxies

(and hopefully some predictions!), a variety of increasingly sophisticated

approaches will be needed. Because of the extreme complexity of the numerical

models, the various approaches must be carefully compared to each other and to
observation.

On the other hand, to achieve a consistent physical understanding of a

complex problem it is very helpful to begin with the study of a relatively

simple phenomenological model which captures the essence of the phenomenon

(e.g. the Ising model of ferromagnetism or the Kolmogorov model of turbulence).

Of course, in using such a simple model one must remember that while it may

succeed in mocking-up the dominant physical processes in some relevant range of

parameter space, it may miss the full interplay of these processes in some

other parameter range, or it may miss the emergence of new processes. For the

problems of galaxy-scale star formation and gas dynamics the ideas behind the

classic Oort cycle - i.e. that clouds are built up by collisional coalescence

and massive clouds are broken up as a result of internal star formation

activity - have provided the basis for such a simple model for some time.

Examples of the usefulness of the Oort picture include the work of Field and

Saslaw (1965), who showed that a kinetic (coalescence) equation for the

evolution of the cloud spectrum with Oort cycle interactions yielded power-law
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solutions like the observed solar neighborhood cloud spectrum, and implied a

dependence of the star formation rate on gas density in accordance with the

empirical Schmidt law. Another example of a cloud collisional model is

provided by Larson's (1969, 1974, 1975, 1976) numerical models of collapsing

protogalaxies, which included density-dependent star formation and energy

dissipation in cloud collisions, and which yielded structures matching many

observations of elliptical galaxies. More recently, a variety of numerical

calculations (e.g. Casoli and Combes 1982, Combes and Gerin 1985, Kwan and

Valdez 1983, Hausman and Roberts, 1984, Roberts and Hausman 1984 and Tomisaka

1984), which include Oort-type interactions, have shown that a spiral density

wave can drive collisional processes, leading to the buildup of giant clouds or

cloud complexes, and presumably, enhanced star formation.

These examples share in common the feature that the interstellar medium is

assumed to consist of an ensemble of distinct clouds (with perhaps a large

range of sizes and masses). The cumulative interactions among the clouds are

used as a link between the large-scale disturbance and the gas dynamics and

star formation on small-scales. This approach, like many turbulence theories

(e.g. eddy viscosity or mixing length theories), is an essentially

phenomenological treatment of intermediate-scale interactions (like the

"inertial" range in incompressible turbulence). It attempts to model the

cumulative effects of small-scale interactions, without incorporating the

details of those interactions (e.g. the physics of the formation of an indi-

vidual massive star). At the same time, the intermediate-scales (cloud

ensembles) can be driven by large-scale disturbances or instabilities (e.g.

density waves, gravitational or Parker-Jeans instabilities), and their non-

linear feedbacks can, in turn, effect the development of the large-scale

instability. Thus, a model of the intermediate-scale interactions serves as an

essential tool for applying knowledge of the physics of the interstellar medium

in our Galaxy and other nearby galaxies, to a variety of galaxy-scale problems.

In the original Oort model, and many of the later versions (e.g. Field and

Saslaw 1965), a number of physical processes of possible importance in the ISM

were not considered. Several of these can be incorporated quite readily into a

continuum formalism derived from a kinetic equation (see Scalo and Struck-

Marcell 1984), such as the fact that cloud collisions at high relative velocity

probably lead to cloud disruption, rather than coalescence (Hausman 1982,

Gilden 1984), or that clouds can be formed from the more or less random local

compression of the intercloud material by runaway O, B stars (Bania and Lyon

1980). The possible effects of an intercloud medium on the cloud ensemble

(e.g. drag) could also be included; however, we have argued elsewhere (Scalo

and Struck-Marcell 1984) that such effects are probably not dominant in most
situations.

The interchange of material between cloud and intercloud media, or more

generally, between multiple phases in the ISM, is an intricate subject in its

own right. The view of the ISM as a gas in several co-existing thermal phases,

with a dynamic, time-dependent balance (McKee and Ostriker 1977, Ikeuchi et al.

1984, Bodifee and de Loore 1985), is fundamentally orthogonal (though not

contradictory) to the Oort picture. However, since most of the interstellar

gas is located in relatively dense clouds, the multiple phase picture is

probably more relevant to the study of the intercloud gas.
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Another area of substantial ignorance is the role of magnetic fields on

all scales. Most workers have concentrated on the effects of magnetic fields

on small-scales (e.g. angular momentum transport, flux loss, etc.), but they

may also contribute an effective viscosity and additional dissipation on

intermediate and possibly large scales (e.g. Clifford and Elmegreen 1983,

Clifford 1984, 1985, Elmegreen 1985). The effects of magnetic fields may be

crudely included in a hydrodynamic model as additions to the cross sections or

rates of viscous transport and dissipation.

Perhaps the most serious questions about the relevance of an Oort-type

cloud model to gas in galaxies are raised by the conclusion of Scalo (1985, and

references therein) that a hierarchical structure of clouds within clouds is

implied by an analysis of observations in a variety of wave-bands of the ISM in

our Galaxy on a wide range of scales. In Scalo (1985) it is suggested that

about five levels of this hierarchy have been observed, with several clumps

contained within each clump of the next higher level. The hierarchecal picture

does not necessarily call into question the importance of cloud collisional

interactions, and cloud-star interactions, which are the basics of the Oort

model. However, at the least, it muddies the simple physical picture of the

original Oort model, e.g. the definition of a "cloud" and the proper treatment

of collisions in a hierarchecal structure, and in fact, makes the definition of

statistical averages ambiguous.

Nonetheless, despite the difficulties and ambiguities a cloud ensemble or

generalized Oort picture still provides a viable basis for building determin-

istic and physically understandable models of large scale gas dynamics and

star formation in galaxies (see e.g. Chiang and Prendergast 1985). As a

starting point for such a model, we have suggested (Scalo and Struck-Marcell

1984) a general kinetic equation for the joint coordinate position, velocity,

and mass distribution of an interstellar cloud ensemble as a function of time.

Unfortunately, this kinetic equation is too complex to serve as a very prac-

tical tool in itself (although N-cloud type calculations can simulate it).

can take velocity and mass moments to derive hydrodynamic equations.

To proceed from this point one must adopt specific models for the cloud

interactions, which act like sources and sinks in the hydrodynamic equations.

A variety of approximate forms were suggested in Scalo and Struck-Marcell

1984. In the next section we will discuss a relatively simple example of

an Oort-type model. In later sections we will apply it to the ring galaxy

problem in particular, and explore the insights it offers on the starburst

problem in general.

IThis procedure is of course quite idealized since we do not know the mass

and velocity distributions or how they may vary with time. However, within

the range of reasonable functional forms for these (where what is reasonable

is based in part on what we know of the cloud distributions in the solar

neighborhood), this amounts to uncertainty in coefficients or order unity.
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II. AN OORT MODEL EXAMPLE

Given our great ignorance about the nature of the interactions in the

interstellar medium in galaxies, the choice of what methods to use in a simple

model, let alone the functional dependence of the interactions, will not be

unique and must be partially based on considerations of practicality or

feasibility. We have chosen to study, as a general-purpose model for a variety

of applications, a hydrodynamic model, averaged over the mass and velocity

distributions of clouds, with equations for the number density of clouds n, the

mean mass of clouds m, and the cloud velocity dispersion c (or equivalently the

internal energy). The equations are very similar to the normal hydrodynamic

equations except for the presence of extra source terms. We include source

terms for the usual Oort-cycle interactions, including: cloud collisional

coalescence, collisional energy dissipation, the breakup of massive clouds and

the acceleration of the fragments due to the stellar winds, expanding HII

regions, and supernovae that result from massive star formation. We have also

included the process of cloud disruption in high relative velocity collisions.

Figure 1 gives a schematic overview of these processes.

Among the key 'philosophical' choices we have made in setting up this

model are: I) We assume that the characterization of the problem by the mean

values of cloud number density, cloud mass, mean flow velocity, and velocity

dispersion (i.e. the random motions of clouds), preserves much of the essential

physics of the problem (more on this later), 2) we do _n°t assume constant

collisional cross sections and direct gas density-dependent star formation, and

3) we do not assume the cloud fluid is isothermal (motivated in part by the

possible observational comparisons since velocity dispersions can be measured

across the face of galaxies). In the remainder of this section we consider in

a little more detail a couple of the key aspects of the adopted model

(henceforth the Oort model), including the parametrizations of the collisional

cross sections------andthe rate of cloud disruption by internal star formation

activity. We also comment briefly on the role of time delays due to the finite

lifetime of massive clouds, a role we have found to be crucial in controlling

the qualitative and quantitative evolution of the models.

A. Collisional Rates

The form adopted for the rate of change of the number of clouds per unit

volume due to coalescence or disruption in collisions is

dn = -_nfc(m,c)m2/3n2c, (1)
(_-t-)collision

where the n2c factor gives the usual quadratic dependence on cloud number

density and linear dependence on velocity dispersion for binary collisions.

The factor m2/3 represents the mass dependence of the geometric cross section,

assuming that the internal density of clouds is roughly constant, and the

factor a n contains the generalized cross section amplitude (i.e. the ratio

of effective to geometrical cross section). The additional collisional

nonlinearities are contained in the function fc' for which we have adopted

the simple parametrized form

l-(c/c r )

f = [ cr ], (2)

c l+(c/C_r )
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where Ccr is the characteristic velocity dispersion such that the average

relative kinetic energy in collisions equals the mean gravitational binding of

a cloud. Thus, for example, when c increases past the value c = Ccr , the sign

of the collisional cross section changes, giving the assumed change from

coalescence to disruption. The exponent r determines the abruptness or

nonlinearity of this change, and is treated as a parameter of the model. The

form of the function is such that it saturates at a maximum (minimum), where we

have essentially 100% efficient coalescence (disruption) at c<<Ccr (c>>Ccr).

Examples of the function, with different values or r are shown in Fig. 2,

taken from Scalo and Struck-Marcell 1986.

The simple binding energy approximation contained in eq. (2) does not by

any means fully represent the complex physics involved in cloud collisions,

see, for example, the recent numerical hydrodynamical calculations of Gilden

(1984), Lattanzio et al. (1985) and Hunter et al. (1986). Moreover, even the

numerical hydrodynamic calculations are highly idealized compared to real

interactions between clouds containing internal hierarchecal clumping. Thus,

it is presently hard to see how to substantially improve upon the physically

plausible, if crude, approximation above.

B. Internal Star Formation

In this simple Oort model we also assume that at any time some fraction

of the clouds are sufficiently massive to form stars efficiently and then

suffer disruption as a result. (For a recent observational reference see

Leisawitz 1985.) We have chosen the following parametrization for this

fraction as a function of mean cloud mass compared to a critical cloud mass

for star formation mSF ,

(m/msF)s

fsF(m) = (3)

l+(m/msF)s '

where the exponent s, like the exponent r in eq. (2), is a parameter of the

model, which characterizes the nonlinearity, or rapid turn-on of star

formation, at m=msF (see Fig. 2). The ratio fsF(m)/fsF(mo) , for some

characteristic (e.g. equilibrium) cloud mass mo, gives the relative rate of

cloud disruption by internal star formation, and also the relative fraction of

clouds that are forming massive stars. If the mean gas density is constant

this ratio can also be taken as an indicator of relative star formation rate.

(Strictly speaking, this interpretation also requires particular assumptions

about the evolution of the cloud spectrum, see Scalo and Struck-Marcell 1986.)

The particular form for fSF in eq. (3) is somewhat arbitrary, but it

embodies several physically relevant features quite naturally. First of all,

the fraction of clouds massive enough to form stars (or at least the prob-

ability of massive cloud formation) is a monotonically increasing function
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Figure 2. Several examples of the parametrized coalescence - disruption

function fc and star formation function fSF are shown (from Struck-Marcell and

Scalo 1986). Depending on the values of the parameters (especially the

exponents r,s), the form of these functions can range from nearly linear to an

almost step function form. The latter implies a strong threshold behavior.

of mean cloud mass. Secondly, since fSF is defined as the fraction of clouds

forming massive stars, it must have a maximum saturation value of fSF,max<l.

On the basis of the first point, we might simply choose to approximate fSF by

a power-law in m. The saturation effect, however, suggests the form of the

denominator on the right hand side of eq. (3). The form of the denominator
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also reflects an attempt to constrain fs_(m) based on the possible evolution

of simple cloud mass spectra (see Appendlx A in Struck-Marcell and Scalo

1986).

Note that a steep increase in fSF occurs at m = mSF if s>>l. On the

other hand, it is apparent from Fig. 2 that if s<2, fSF is sufficiently smooth

that there is only a modest increase at 'threshold'.

As in the case of the collision function fc' it is difficult to go beyond

these qualitative considerations. Basically, the function fSF is dependent on

two highly uncertain quantities: i) The efficiency of massive star formation

as a function of cloud mass, and 2) the most probably time-dependent mass

distribution of the cloud ensemble. Ongoing observations of star-forming

regions in our Galaxy should provide helpful constraints on the first factor.

We might hope that N-body simulations of interacting cloud ensembles

would provide useful constraints on the second quantity, in the same way that

molecular dynamics experiments yield information on net chemical reaction

cross sections. The analogy is imperfect of course, because we don't have a

first-principles understanding of cloud interactions, and the detailed results

of N-cloud calculations may depend sensitively on the assumptions made about

these interactions. Nonetheless, we can illustrate the usefulness of these

calculations with one example from the work of Kwan and Valdes (1983). The

evolution of the mass spectrum (g(m)) of a cloud ensemble following passage

through a spiral density wave, on a timescale which is assumed to be shorter

than the massive cloud lifetime, is shown in Fig. 2 of their paper. The form

of the mass spectrum does change significantly with time, but qualitatively,

it is characterized by a single dominant peak at all times, supporting the

basic consistency of a model based on the mean mass. Moreover, a narrowing of

the mass distribution as the mean mass increases and a steepening at the high-

mass end areapparentintheir figure (for this essentially pure coalescence

case). These features indicate a fairly rapid increase of the mass fraction

greater than some (relatively large) critical mass as a function of the mean

mass. If this is also convolved with a threshold behavior in the star for-

mation efficiency, then it is quite plausible that the exponent s>2 in eq.

(3).

C. The Rate Equations with Time Delays

With the expressions above for the collision and star formation terms,

the equations for the rate of change of the cloud number density and velocity

dispersion squared due to these interactions in an isolated fluid element can

be written

dn _ m2/3n 2
dt an fc c + _nfsF(m(t-Td))n(t-x d)

d(nc2) - a m2/3n2c3 + B fsF(m(t-Xd))n(t-x d) (4)
dt c c

(see Scalo and Struck-Marcell 1984, Scalo and Struck-Marcell 1986 for more
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details)• With an additional assumption for the rate of conversion of gas

into stellar remnants, dm/dt, the equation set is closed. The full hydro-

dynamical equations, with pressure terms and other spatial gradients, are

derived and discussed in detail in Scalo and Struck-Marcell 1984.

As will be shown in the following section, it is essential to include

the finite cloud lifetime in the cloud disruption terms in eqs. (4). (The

importance of the cloud lifetime is readily apparent in several N-cloud

studies of density waves, e.g. Hausman and Roberts (1984), Tomisaka (1984).)

Specifically, massive clouds are assumed to have a fixed lifetime Td, and

thus, the cloud disruption rate at time t is proportional to the number of

massive star-forming clouds at time t-Xd, i.e. n(t-Td)fSF(m(t-Td)). With

the inclusion of the time delay effect our simple Oort model is complete•

To summarize, we have attempted to model, in a very general way, the

principle nonlinear effects associated with cloud collisions and the feedbacks

of massive stars on the cloud ensemble. To keep the model simple a number of

processes noted in the introduction have not been included• Eventually, it

would be interesting to extend the model to include some of these. In general,

there is no reason that the hydrodynamic formalism must be restricted to Oort-

type interactions• Many potentially interesting kinetic effects are excluded

in a mean fluid model, but in this case some idea of what has been lost can be

obtained by comparing to N-cloud calculations. (Multiple-fluid hydrodynamic

models are also possible, and even two-scale models have proven of great use in

atmospheric physics.)

Even with the many omissions this 'simple' model appears at first sight

to be very complex, and dependent on many parameters• However, as far as the

qualitative evolutionary behavior is concerned, this turns out not to be the

case. First of all, the equation set (4) has a single equilibrium (with

no, mo, c real and > 0) at constant gas mass density, and if the equa-o

tions are nondimensionalized in units of this equilibrium six dimensionless
• _k ^_^ _ --_ 1 .. J ^ _k ^--_^_^_ _ _ _h^ _ _ _ _ _1 _^_

star formation msF/mo, (in units of m o for convenience) the critical velocity

dispersion for disruption in collisions Ccr/Co, (in units of co ) a dissipation

efficiency factor, and T the ratio of the cloud lifetime to the equilibrium

cloud collision time. The extensive parameter study in Struck-Marcell and

Scalo 1986, shows that, as long a S>2, only the parameter T effects the

qualitative behavior of the model, the quantitative effects of the other

parameters decouple to the extent that their individual effects are fairly

understandable physically (see the following section)• Thus, we believe that

this deterministic Oort model can serve as a useful tool for studying a variety

of problems in galactic gas dynamics, and as an aid in the interpretation of

other more complex calculations•

Ae

III. APPLICATIONS I: A MECHANISM FOR STARBURSTS

Evolution in a Closed Box

The simplest application of the model eqs. (4) is to the study of the
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evolution of a cloud system in an isolated closed box with constant gas

density p = mn, following a disturbance. Some of the essential results of such

calculations were given in Scalo and Struck-Marcell 1986, and an extensive

parameter study is reported in Struck-Marcell and Scalo 1986, so we limit the

discussion in this section to a brief summary.

We have found, on the basis of an extensive grid of numerical inte-

grations of eqs. (4) and linear stability analysis, that following an arbitrary

disturbance, the closed box cloud system relaxes within a few cloud collision

times to one of two generic behaviors. If T, the cloud lifetime to collision

time parameter (henceforth simply the 'time delay' parameter T) is assumed to

be less than some critical value Tcr , the system relaxes rapidly to the single

stable equilibrium state (no, mo, Co). On the other hand, if T>Tcr the system

relaxes to a stable closed curve, rather than a point, in the (n,m,c) phase

space. In this case the system undergoes nonlinear, self-excited oscillations.

At T=Tcr the system undergoes a so-called Hopf bifurcation, so that for T

slightly greater than Tcr the attracting set is a single-period limit cycle.

The bifurcation is characterized not only by the appearance of the limit cycle,

but also by the fact that the original equilibrium state becomes unstable.

Thus, even if the system is in a state near equilibrium, if T>Tcr , it will

evolve out to the limit cycle.

The value of T is found to be of order unity for virtually the whole
cr

range of astronomically interesting values of the other parameters. Thus,

since cloud lifetimes are probably of the same order as cloud collision times,

the bifurcation phenomenon is relevant to galactic cloud systems. Moreover,

since Tcr is insensitive to the other parameters, it is not expected to be a

singular or unusual phenomenon. Even more generally, the bifurcation is not

restricted to the precise form of the Oort model terms of eq. (4), see Scalo
and Struck-Marcell 1986.

If T is increased far enough beyond Tcr , a second bifurcation occurs, this

time to a double-looped limit cycle with two bursts of different amplitude per

cycle. Indeed, further increases of T lead to a series of bifurcations and

eventually to deterministic chaos in the phase space. In this limit the SFR

vs. time looks essentially stochastic, with frequent bursts (Scalo and Struck-

Marcell 1986).

This result leads us to consider the physical meaning of high T. If the

cloud lifetime consists essentially of the protostellar collapse time plus the

main-sequence lifetime of massive stars, it should be more or less constant

universally (at a given stellar metallicity). On the other hand, the

equilibrium cloud collision time depends inversely on the cloud density and

cross section, which turns out to be the product of the mean gas density of the

cloud fluid and a slowly varying function. Thus, increased gas density implies

increased T (T_P roughly). Note, however, that m and fSF are highly nonlinear

functions of T. Thus, this is not a Schmidt law density dependence.

B. A Starburst Mechanism and S_stematics

With the essentially mathematical questions of the generic existence and

stability of the limit cycle bifurcation resolved, we can proceed to the
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questions of the physical mechanism of the bifurcation and its consequences for

galactic gas dynamics. First the mechanism: In Scalo and Struck-Marcell 1986

we attributed the bifurcation to a "coalescence overshoot", where, as a result

of the relatively long cloud lifetime, a massive star-forming cloud can con-

tinue to grow for some time before suffering disruption. If the function fSF

is sufficiently nonlinear (sa2), and the cloud mean mass is near the threshold

value mSF , this extra growth translates into a great deal more (and presumably

more efficient) star formation, i.e. build-up to a burst. Roughly one delay

time later the system suffers the consequences of these excesses - severe cloud

disruption. The energy input is quickly dissipated in (possibly disruptive)

collisions, then the system finds itself in a shredded, quiescent state, and

begins to regrow through coalescence.

The key step is the overshoot, or excess cloud growth past the equilibrium

mean mass (see Fig. 2). This step is similar to the triple-alpha nuclear

reaction in that a third-body (or more for the clouds) collision occurs before

the outcome of the original collision is resolved.

If we consider a series of closed box models with successively larger

values of T>Tcr, we find that both the amplitude and the period of the limit

cycle increase in the system phase space. This implies an increased starburst

amplitude, and a longer time between bursts (up to i0 times the burst duration,

see Fig. 3). The burst duration is of order T at T=Tcr , i.e. of order a cloud

collision time ....... 7 .....o^ yr. _L vucie_ quite _luwly wILu T. it ........• U Lld_ U_LL

suggested (e.g. Loose et al. 1982) that starbursts are of short duration

because the gas is blown out of the region (e.g. a galactic nucleus) by the

resulting winds and supernovae. These one-zone models imply instead that the

fundamental reason may be that the cloud system is simply broken down to a

state where it is no longer capable of forming stars efficiently. The apparent

low mass of the molecular clouds in the core of M82(Knapp et al. 1980, Stark

1982, Olofsson and Rydbeck 1984), together with the possible polar outflow

(Ungar et al. 1984), probably indicate that a combination of both processes is

at work in that galaxy.

The density dependence of the bifurcation sequence, together with the

notion of high gas consumption in bursts (see references in section I), implies

another relaxation process, one which tends to drive the cloud system below the

burst threshold. For example, consider the case of rapid gas infall into a

galactic nucleus induced by a tidal encounter which boosts the gas density and

time delay parameter above the value for the onset of chaos. With the system

in the burst mode a large fraction of the time, gas consumption will be rapid,

which in turn lowers the gas density. Figure 4 shows that a calculation in the

limit cycle regime, and including gas consumption, yields rapid damping of

burst amplitude. The gas consumption in these calculations is scaled to fSF'

and can range up to 30%. (Star formation is clearly very efficient.) Thus,

galactic cloud systems are probably found in the chaotic regime only rarely

(protogalaxies excepted?), and even successive limit cycle bursts are strongly

damped. This calculation also indicates that the gas consumption timescale

does not determine the duration of the bursts in the limit cycle or chaos

regime (It is the breakdown of the clouds that turns off the burst even if

there is still an ample gas supply.) This implies that apparent gas consumption

timescales in galaxies are relatively meaningless if the galaxies burst.
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Figure 4. Time series of the function fSF' as in Fig. 3, but for a calculaLion

with gas depletion included (from Struck-Marcell and Scalo 1986).

C. Other Consequences and Parameter Dependences

The model also yields several other observationally relevant consequences.

First of all, even within the limit cycle-starburst regime, the model has a

strong tendency to remain nearly isothermal. There is some observational

evidence for this result (see Lewis 1984, Gallagher and Hunter 1984). Even

under conditons that show large variations in m, n, and fSF' the velocity

dispersion varies only by a factor of about a few.

Secondly, we note that, in the same way that the model predicts starbursts

for T>Tcr , it also predicts bursts of energy dissipation in cloud collisions.

These dissipation bursts might produce measurable shock emission, e.g. from

H 2 and [01]. Estimates are given in Struck-Marcell and Scalo 1986. An

interesting complication is that in the models, the dissipation burst and star

formation burst are out of phase.

Thirdly, there is commonly a delay of order several equilibrium cloud

collision times between the occurrence of a disturbance in the cloud system and

the starburst it triggers. Most disturbances act to break down the clouds

initially and the delay is roughly equal to the regrowth timescale. This

regrowth time depends on how severe the cloud breakdown is, and thus on the

magnitude of the disturbance. Clearly, this effect can help account for the

observation that many interacting galaxies do not have enhanced SFRs.
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We conclude this discussion of the closed box model with a few comments

on the role of parameters other than T. Apparently, the chief role of the

parameter msF/mo, is in determining the maximum value of the star formation

function: (fsF/fSF(mo))max = (msF/mo)S. Since msF/m ° (m° mean equilibrium cloud

mass) is an essentially unknown quantity, the model cannot predict absolute star

formation rate amplitudes. On the other hand, the parameter Co/C_r plays the

dominant role in determining variations in c. Small values of this parameter

(i.e. when the equilibrium value c is much less than the cloud collisional

disruption threshold), yield nearl_ perfect isothermality. Finally, decreasing

the dissipation efficiency parameter increases the value of Tcr somewhat, and

decreases (fSF)max for a given T>Tcr. This is not surprising since dissipation

is an important part of the coalescence overshoot phenomenon.

IV. APPLICATIONS II: THE HYDRODYNAMICS OF RING GALAXIES

A. Wh_ Study Rin_s?

The chief result of the preceding section was that above a critical value

of the time delay parameter, i.e. above a threshold gas density, starbursts are

a generic behavior of an Oort-type system. Taken together with the observa-

tional evidence that strong disturbances, e.g. strong density waves, induce

starbursts, this result cries out for numerical modeling of the gas dynamics

in interacting galaxies. In general, this modeling is a very formidable under-

taking, although there have been several pioneering efforts (Theys and Spiegel

1977, Icke 1985, and Noguchi and Ishibashi 1986). Thus, in attempting numer-

ical modeling with the Oort cloud fluid we have chosen to focus on what is

probably the simplest case - ring galaxies.

Since ring galaxies are relatively rare objects, it is worthwhile to

elaborate on the reasons why, among all types of interacting system, they

are deserving of detailed study. These reasons include the following.

i. Relatively unambiguous observation comparisons.

Detailed studies of the optical morphology and kinematics of several ring

systems have been carried out, including the Cartwheel galaxy (Fosbury and

Hawarden 1977), the Lindsey-Shapley ring (Few, Madore and Arp 1982), and the

Vela ring (Taylor and Atherton 1984). These studies revealed radially prop-

agating rings of HII regions with companions at a distance of about one ring

diameter. Thus, in these cases at least, the circumstantial evidence for a

recent collision, and a resulting density wave (as in the Toomre 1978 models)

is strong. The strength of the wave depends on the relative masses of the

target and intruder galaxies, and, if the encounter is essentially impulsive,

to a much lesser degree on orbital passage time.

The possibility of obtaining direct observational estimates of the density

wave amplitude is clearly important, and is the first strong argument for

studying rings. (Consider the long debate over the amplitude of density waves

in spiral galaxies.)
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2. Symmetry.

In a direct, head-on collision between a purely stellar intruder galaxy

and a target system containing a cold disk, the formation of a cylindrically

symmetric ring in the disk can be approximated as a one-dimensional problem.

Indeed, even the examination of the evolution an isolated fluid element, driven

by a time-dependent external perturbation can be useful in the ring galaxy

problem (see Appleton et al. 1985). In general, some symmetry remains even in

the more likely case of an off-center collision. In this case the response of

the disk can be treated as approximately two dimensional, i.e. in the plane of

the disk. Multidimensional numerical hydrodynamic calculations require a great

deal of computer time, so having relevant low-dimensional approximations,

within which it is practical to vary parameters and perform many computational

runs, is extremely helpful.

3. Range of perturbation amplitude.

Collisions with small companions, as well as with larger intruders are of

interest, as is the variation of response with companion mass. From a prac-

tical point of view, small disturbances are usually easier to model stably and

accurately, so it is a useful check of the stability of the numerical approxi-

mation to verify that model behavior changes continuously as the disturbance is

increased. Thus, both numerical and astronomical considerations converge here.

It appears, on the basis of IRAS infrared luminosity and color

temperature (SI00/S60) , that many of the rings are undergoing moderately

strong, and of course, highly extended starbursts (see Appleton and Struck-

Marcell 1986a). The large extent of the star formation in rings is not only

intrinsically interesting, but also of practical importance for providing a

class of galaxy where any nuclear activity is generally separated from

starburst activity• The spatial extent also makes the more nearby rings good

candidates for near-IR, radio continuum, 21 cm, and molecular observations of

spatial variations in star formation and cloud characteristics. Some work is

already underway (e.g. Ghigo et al. 1986).

In summary, the ring galaxies appear to possess a number of unique

advantages for facilitating the comparison between observation and theory of

star formation in galaxies, as well as being especially amenable to numerical

modeling.

B. Approximations for Numerical Modeling

We have begun a two-pronged effort to model ring galaxies using the Oort

model cloud fluid. The first part of this program consists of one-dimensional

numerical hydrodynamic modeling of cylindrically symmetric rings, using a

Lagrangian (moving) grid, and explicitly calculating the time-delay effects.

The second part of the program consists of two-dimensional hydrodynamic

calculations of the formation and evolution of both symmetric and off-center

rings. Both computer programs use the well-known Flux-Corrected Transport

algorithm (see Book 1981); details will be published elsewhere.
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In the relatively (and only relatively!) inexpensive one-dimensional

calculations, it is possible to include the full details of the cloud inter-

action model (e.g. density-dependent time delay parameters calculated accurately

at each grid point), and to do a large enough number of calculations to fairly

sample parameters and initial conditions. The two-dimensional calculations are

better suited to study kinematic and dynamic questions (e.g. angular momentum

transport), but they become impractical without some simplifications in the

cloud fluid terms. For example, we typically assume isothermality and use

a very coarse calculation of the memory effects in the two-dimensional

calculations. Since here we are primarily interested in star formation in

the ring(s), most of the discussion below will be limited to results from

representative one-dimensional calculations.

We have not yet coupled a realistic treatment of the stellar dynamics

tothe hydrodynamic calculations (nor included self-gravity in the gas), but

instead, assume that the potential of the target galaxy is dominated by a

softened point mass, with a softening length of typically 40 equilibrium

cloud mean free paths (e.g. 13(_/0.3 kpc.) kpc.). This large softening

length yields a rather flat rotation curve, over a large range in radius. The

companion galaxy is assumed to be a gas-free, softened point mass (softening

length of I/4 - 1/2 that of the target disk), on a free-fall trajectory. In

the one-dimensional calculations, angular momentum is assumed to be conserved

in each Lagrangian fluid element (i.e. each discrete radial ring).

Finally, in all of the calculations reported below, the gas density was

assumed to be constant across the disk initially, with a value well below the

threshold for bursts.

C. Numerical Results in One-Dimension

Several of the most interesting numerical results are well-illustrated by

considering, either individually or in comparison, two representative one-

dimensional calculations. These calculations have initial conditions as

described above, with a companion mass equal to 20% of the softened point mass

in the target galaxy. The companion orbit is such that it falls through the

center very rapidly, yielding a somewhat unrealistically impulsive disturbance,

but in this case the details of the orbit are unimportant. The values of the
C O =cloud fluid parameters are as follows: o/Ccr 0.924, the equilibrium

velocity dispersion is quite near the disruption threshold; mo/msF = 0.I, the

equilibrium mean mass is well below the threshold for efficient star formation;

the dissipation efficiency is of order unity (i.e. almost completely inelastic

collisions); and r=s=4, implying steep thresholds in fc and fSF" The only

difference between the two calculations is that the initial, equilibrium value

of the time delay parameter is 0.3 of the critical value in the first case, and

0.75 the critical value in the second. (For brevity we will refer to these as

the 0.3 and 0.75 models.)

Figures 5 and 6 show the radial profiles of the mass density, star for-

mation rate indicator fsF/fSF(mo), and radial velocity at one representative

time in the 0.3 and 0.75 models, respectively. Although we will not discuss

detailed dynamical questions here (see Appleton and Struck-Marcell 1986b), we

note several very basic features in these figures. First, the radial velocity

profile shows infall outside of the ring, positive velocity within the ring,
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and, at late times, infall behind the ring into a second ring. Secondly, the

density profiles show that most of the density variations are limited to within

a factor of two of the initial value. This is one indication of the fact that

the ring propagates through the gas; it is not a shell.

These comments on the density structure also provide a starting place for

studying the star formation in the first or primary ring. It is clear from

Figure 5 that the enhancement of the SFR in the primary ring is also typically

no more than a factor of a few. A relatively small increase is expected on the

basis of the closed box results: since the density increase is about a factor

of two, the time delay parameter only increases through the density wave from

0.3 to about 0.6 of the critical value for the starburst bifurcation, so we

expect rapid damping to equilibrium following a disturbance.

The situation in Figure 6 is quite different. Shortly after its appear-

ance in this case, the primary ring exceeds the density enhancement factor of

4/3 needed to increase the time delay parameter beyond the critical value.

Interestingly, the ring does not burst immediately. The disturbance is still

modest, and we expect that, in the analogous closed box case, the system would

execute several cycles of a growing oscillation to evolve from near the (now

unstable) equilibrium out to the limit cycle. From the double-peaked structure

of the star formation profile at the intermediate time shown in Figure 6 we see

evidence of such an oscillation. At that time, it appears that a given fluid

element passes out of the overdensity part of the wave, into the rarefaction

zone where T<Tcr , before it can 'grow' a burst. The multiple peak structure is

interesting in its own right, since several rings seem to show such small-scale

filagree.

Later in the run the density profile steepens, making for a more unstable

cloud system and a stronger disturbance (see Struck-Marcell and Appleton in

preparation). The result is a starburst near the peak of the wave, with echo

bursts behind, each with decreasing amplitude as the density decreases. The

energy input from the bursts generates significant pressure, which begins to

effect the density wave profile.

Up to this point, the simple closed box model has proved to be a useful

tool for helping to understand the numerical hydrodynamic calculations, at least

qualitatively. At the same time, the numerical hydrodynamics reaffirms, in a

more general context, the existence of the starburst bifurcation, which was

discovered in the closed box. However, the hydrodynamic flows are fairly modest

at the times shown in Figures 5 and 6, at least in the primary ring.

Once the primary ring has propagated through a good fraction of the disk, a

second ring forms and begins to move outward. It is apparent in Figures 5 and 6

that the infall velocities generated in the rarefaction behind the primary ring

are larger than those in front of the primary. In this case the hydrodynamic

flow times can become comparable to cloud interaction timescales, and the closed

box analogue without external driving may no longer be very accurate (Appleton

and Struck-Marcell 1986b). Thus, the compression is larger in the second ring,

and the density enhancement soon exceeds that in the primary, leading to

strongly enhanced star formation or bursts.
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It is an interesting question whether third, fourth, etc. rings can form.

We do not have a definitive answer at this time, but we know that the radial

oscillation period of an individual fluid element is roughly equal to its free-

fall time, which decreases with radius. Thus, the oscillations of adjacent

fluid elements (or stars) grow progressively out of phase. This dispersion,

coupled with dissipation damping, and the additional incoherence due to the

pressure waves generated by starbursts will cancel out the coherent radial waves

fairly rapidly.

The models above provide information on the spatial distribution of

relative SFR, which may be usefully compared to optical observations and radio

continuum maps. However, if there is substantial obscuration, the optical

observations may not reveal all of the star formation. On the other hand, many

of the nearby rings were detected at 60 and i00 _m by IRAS, although with its

large beam size IRAS can provide no spatial resolution. The IRAS observations

show that the integrated FIR luminosity of the rings is typically 2-6 times that

of normal galaxies (see Appleton and Struck-Marcell 1986b). Are the models

consistent with this result? To provide a partial answer to this question we

integrate the SFR over the disk and compare to the initial unperturbed disk. Of

course, the result of this integration depends on the choice of the outer radius

(and on the value of the parameter msF/mo) , so it can only provide an estimate.

The first result of this integration exercise is that if the ring bursts,

the net SFR can in fact reach a value of a few to I0 times the initial value.

Most of this star formation does originate in the ring(s). Moreover, the models

imply that to get a strongly enhanced net SFR requires a burst in a ring to

offset the suppression in rarefaction regions. Such bursts can only occur in

the model if there is a finite time delay, i.e. only if the local gas densities

are sufficiently large.

D. Two-Dimensional Calculations

In order to treat more realistically the propagation of the density wave

within a differentially rotating disk galaxy we have performed somewhat

simplified cloud fluid calculations in two-dimensions. We consider both

centered and off-center collisions of the companion with the disk (see Appleton

and Struck-Marcell 1986b for details). The principal difference between the

one- and two-dimensional calculations is the transport of angular momentum

within the ring which leads to more compression of the outer edge of the ring

and to stronger rarefaction behind the ring. Interesting behavior of the cloud

fluid is found when the ring compression timescale becomes comparable with the

cloud collision time. Even in the case when the massive cloud lifetime is zero

(instantaneous cloud recycling), the models show that significant differences

can exist between the spatial distribution of newly formed stars and the

amplitude to the density wave. The situation is even more interesting when the

amplitude of the density wave varies with position around the ring, as in the

off-center collisions. As an example we show in Figure 7 the star formation

rate distribution resulting from an off-center collision of a i/5 mass companion

galaxy. Observations of SFRs around off-center ring galaxies will be an
important test of the cloud fluid models.

In the future, we plan to include the full set of Oort cycle interactions

in the two-dimensional calculations. Eventually, we also intend to incorporate
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a better treatment of the stellar gravity, and more realistic modeling of cloud

interactions (e.g. of the processes wind-driven fragmentation and magnetic

dissipation) in the cloud fluid equations.
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Figure 7. Contours of the star formation function fSF from a two-dimensional

hydrodynamic calculation of an off-center collision. As in collisions along the

symmetry axis, star formation is clearly concentrated in a ring. However, in

this case the ring is noncircular, and the star formation varies strongly with

angle around the ring. The base level of the contours is fSF/f_F = 0.5, with

increments of 1.0.

V. CONCLUSION: BEYOND RINGS

In conclusion, we recall that the arguments for studying ring galaxies were

not only based on their intrinsic interest, but also in the hope that they might

serve as a representative of many types of tidal interaction. This notion is a

potentially rich vein that we have hardly begun to mine. There are some direct

applications of course. Ring formation is probably the beginning of a small
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impact parameter galaxy merger. The evolution from ring to completed merger

could be explored by putting the companion in the ring calculations in a damping

orbit, allowing multiple, nonimpulsive encounters. The elliptical rings

produced in off-center collisions are first cousins to interaction-induced

spiral waves. More specifically, we might hope that the results above on star

formation in rings can be extended to arbitrary density waves.

The Oort model results suggest that, in general, the nature of the star

formation and dynamics of a local cloud system will depend on which of several

important timescales are commensurate. The first two of these timescales are

the cloud collision time and the massive cloud lifetime. The former is

basically the relaxation time of a dissipative cloud system, while the ratio of

the latter to the former, T, provides a measure of the instability of the

system. It was found in both the general applications, that above a critical

value, Tcr , there is no longer a single stable equilibrium state, instead the

system tends to 'relax' to an oscillatory attractor in phase space. A third

timescale is the local dynamical or flow time, which is typically of the order

as the local free-fall time. A fourth timescale, which is closely related to

the third in many cases, is the global dynamical timescale, e.g. the time

between perigalactic passages of a bound companion. If the local cloud

environment is effected by strong disturbances, these timescales can be roughly

commensurate with the cloud collision time, and the local cloud system can be

forced far out of equilibrium. Even if the time delay parameter is small, so

that the system is not unstable to oscillatory behavior, this nonequilibrium

behavior can yield enhancements or suppressions of star formation, which do not

necessarily correspond to the peaks and valleys in the gas density. If,

however, all of the first three or all four of the timescales are comparable,

then the system is driven relative to an 'equilibrium' that is inherently

oscillatory. In this case, depending on the regularity of the driving forces

relative to the natural system oscillation time, the dynamical evolution can

appear quite stochastic.

Such behavior seems likely in strong interactions and mergers. In the

burst regime of the model in general, and in the case of commensurate large-

scale dynamical and cloud system timescales in particular, the dispersion in

SFR, as a function of gas density for example, is large. Hopefully, these

timescale considerations will be useful in interpreting observations, though

the task will be complex.

Finally, these results suggest answers to some of the questions posed

in the introduction, at least within the context of the Oort model. The

mechanism of starbursts is the limit cycle bifurcation, or coalescence over-

shoot instability, which is a qualitatively different process than 'normal',

equilibrium star formation. Unfortunately, the possibility of driven, non-

equilibrium behavior superimposed on the limit cycle may confuse the application

of this result to complex systems. However, a number of interesting comparisons

between theory and observation should be possible in the simpler cases, like the
ring galaxies.

The canonical description of the ring galaxies is that they are like

dropping a pebble in a pond. For strongly interacting galaxies in general, the

models suggest a better analogy might be to a storm at sea, with starbursts as

the froth of a breaking wave.
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Gallagher: Is there a regime where the model breaks down due to energy input

by stars formed in a major burst?

Struck-Marcell: It is possible that in a violent burst most of the clouds are

broken down completely, and all the material distributed more uniformly in an

intercloud phase (e.g. Ikeuchi et al. 1984, and Bodifee and de Loore 1985).

In the Oort model discussed here, there is a breakdown of the system into a

large number of very low mass clouds following a strong burst. The clouds

regrow by coalescence on a long timescale. It is tempting to think that this

is at least part of the explanation for the tiny molecular clouds in the core
of M82.
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C.STRUCK-MARCELLETAL.

Begelman: What is your prescription for injecting kinetic energy into the
clouds? Are your results sensitive to the details of this prescription?

Struck-Marcell: At the end of its lifetime a massive cloud is supposed to

break up into Nc fragments, which fly off in random directions with a mean

velocity dispersion CB3. The generic behavior of the model is not sensitive

to the precise value of any parameter except the ratio of the cloud lifetime

to the collision time, T. However, the quantities Nc, CB3 are not allowed to

vary freely, but are tied to the equilibrium values of the model and the

dissipation efficiency, since dissipation balances energy input in equilibrium.
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